Real-Time Fluid Effects on Surfaces using the Closest Point Method
نویسندگان
چکیده
The Closest Point Method (CPM) is a method for numerically solving partial differential equations (PDEs) on arbitrary surfaces, independent of the existence of a surface parametrization. The CPM uses a closest point representation of the surface, to solve the unmodified Cartesian version of a surface PDE in a 3D volume embedding, using simple and well-understood techniques. In this paper we present the numerical solution of the wave equation and the incompressible Navier-Stokes equations on surfaces via the CPM, and we demonstrate surface appearance and shape variations in real-time using this method. To fully exploit the potential of the CPM, we present a novel GPU realization of the entire CPM pipeline. We propose a surface-embedding adaptive 3D spatial grid for efficient representation of the surface, and present a high-performance approach using CUDA for converting surfaces given by triangulations into this representation. For real-time performance, CUDA is also used for the numerical procedures of the CPM. For rendering the surface (and the PDE solution) directly from the closest point representation without the need to reconstruct a triangulated surface, we present a GPU ray-casting method that works on the adaptive 3D grid.
منابع مشابه
A Semi-Lagrangian Closest Point Method for Deforming Surfaces
We present an Eulerian method for the real-time simulation of intrinsic fluid dynamics effects on deforming surfaces. Our method is based on a novel semi-Lagrangian closest point method for the solution of partial differential equations on animated triangle meshes. We describe this method and demonstrate its use to compute and visualize flow and wave propagation along such meshes at high resolu...
متن کاملThe Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates
In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...
متن کاملThe Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates
In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...
متن کاملThe Implicit Closest Point Method for the Numerical Solution of Partial Differential Equations on Surfaces
In this presentation, we describe an implicit Closest Point Method [3] which allows large, stable time steps for high-order PDEs while retaining the principal benefits of the original method. Example computations (including the in-surface heat equation, reaction-diffusion on surfaces, Laplace–Beltrami eigenmodes, and fourth-order interface motion) on a variety of surfaces demonstrate the effect...
متن کاملA localized meshless method for diffusion on folded surfaces
Partial differential equations (PDEs) on surfaces arise in a variety of application areas including biological systems, medical imaging, fluid dynamics, mathematical physics, image processing and computer graphics. In this paper, we propose a radial basis function (RBF) discretization of the closest point method. The corresponding localized meshless method may be used to approximate diffusion o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Graph. Forum
دوره 31 شماره
صفحات -
تاریخ انتشار 2012